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CORRELATION AND PATH COEFFICIENT ANALYSIS OF 

MORPHOLOGICAL TRAITS AFFECTING GRAIN SHAPE IN RICE 

GENOTYPES (ORYZA SATIVA L.) 

 

SUMMARY  

This work was undertaken to look into the interrelationships among 

morphological traits and rice grain shape. For this purpose, a set of 25 rice 

genotypes was sown and subjected to a farm survey, based on the standard 

evaluation system for rice. Correlation coefficient analysis showed that the grain 

shape was positively correlated with grain length, panicle length, plant height and 

the number of tillers while, there were statistically significant and negative 

correlations between grain shape with maturity date, number of grains per 

panicle, grain breadth, 100-grain weight and flag leaf width. Sequential path 

analysis revealed that grain breadth, grain length and number of grains per 

panicle, as first-order variables, was responsible for about 98% of the variation in 

grain shape. Also, 100-grain weight, maturity date, number of tillers and flag leaf 

width were determined as second-order predictors.  

Amongst second-order predictors, 100-grain weight was a noteworthy trait 

regarding its high direct and indirect effects on grain breadth and grain length. 

Study of multicollinearity measures revealed that sequentializing of predictor 

variables reduced problems due to multicollinearity leading to a better 

understanding of the interrelationships among the various traits and their relative 

contribution. Also, the bootstrap analysis indicated that all direct effects were 

significant.  

The results suggested that grain breadth, grain length and number of grains 

per panicle, as first-order predictor variables had the highest direct effect on grain 

shape and could be used as a selection criterion to improve rice grain shape. 

Also, 100-grain weight, maturity date, number of tillers and flag leaf width, as 

second-order predictor variables affect the rice grain shape indirectly through 

their effects on first-order predictors. The authors recommend for the use of 

sequential equation modeling to conduct a proper sequential path analysis. 
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INTRODUCTION 

Rice appearance is a character considered as one of the main quality 

attributes by consumers therefore, measuring and understanding factors 

influencing rice grain appearance is a great challenge for industries and breeders 

in meeting consumer preferences (Haider et al., 2014). In genetics, grain shape 

has been widely accepted as a complex trait controlled by multiple genes with 

small effects (Yin et al., 2015). Thus, understanding the complexities governing 

the relationships among traits leads to increased selection gain in breeding 

programs. In this regard, correlation coefficients, multiple linear regression and 

path analysis are some of the common statistical methods. Determination of 

correlation coefficients is an important statistical procedure to examine the 

relationship between traits. However, increase of the number of independent 

variables controlling a particular dependent variable can lead to increased 

interdependence. In such situation, correlations may be insufficient to explain the 

associations in a way that will enable breeders to decide on a direct or indirect 

selection strategy (Ofori 1996; Sabaghnia et al., 2010). 

Path coefficient analysis is a statistical tool that partitions correlation 

coefficients into direct effects (showing how a 1 unit change in the predictor 

variable will affect response variable) and indirect effects (association of one 

predictor variable with response variable mediated through other predictor 

variables in the model). It is obvious that decomposition of the effects depends 

on the model intended to describe the causal relationships among variables 

(modeling). Therefore, modeling is an important step towards path analysis. 

Among path analyses, we can distinguish two types of models: (i) simple 

models, in which all traits except for the dependent one are set up at the same 

ontological level, which makes for their being treated as co-related; and (ii) 

complex models, in which traits are set up at different levels, and relations (that 

is, co-relations or cause-and-effect relationships) between them are to reflect 

possible biological relations. Complex models are referred to as se¬quential 

models reflecting sequential development of crop traits and, thus, sequentiality of 

cause-and-effect associations among them (Kozak and Azevedo 2014). Although 

traits are set up in some sequential order in the model, the methodology of this 

setting is based upon stepwise vari¬able selection in regression analysis and 

analysis of the total contribu¬tion of the traits to the variation of the dependent 

vari¬able (Mohammadi et al., 2003). In a regression analysis however, 

collinearity (or multicollinearity) is the undesirable situation where the 

correlations among the independent variables are strong. Tolerance is a statistic 

used to determine how much the independent variables are linearly related to one 

another (multicollinear). Tolerance is the proportion of a variable's variance not 

accounted for by other independent variables in the model. A variable with very 

low tolerance contributes little information to a model, and can cause 

computational problems. VIF, or the variance inflation factor is the reciprocal of 

the tolerance. As the variance inflation factor increases, so does the variance of 
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the regression coefficient, making it an unstable estimate. Large VIF values are 

an indicator of multicollinearity (IBM Released 2010). 

The objective of this paper was to address the nature of the relationships 

between some prominent morphological traits and rice grain shape. The outcome 

could be helpful to develop selection strategies in genetic breeding programs 

aimed at improving marketability or cooking quality of rice. 

 

MATERIAL AND METHODS 
Plant materials and studied traits 
Field experiment was carried out at the Tonekabon Rice Research Station 

located at 36°51'N, 50°46'E and -22 meter below the sea level. A set of twenty 
five rice genotypes was prepared from the Iran Rice Research Institute, Rasht 
including: Alfa, AliKazemi, Anbarboo, Binam, Century Patna231, Dom Siah, 
Gharib, Gharib Seyah Rayhani, Hassani, Hassan Saraei, Hassan Saraei 
Atashagah, Hassan Saraei Pichide Ghalaf, IR28, IR58, Lido, Line213, Line304, 
Line305, Mussa Tarom, Plano, Salari, Sanaderia, Sange Jo, Strella, and Zenith. 
After a primary growth in the nursery, the derived seedlings were transplanted to 
the main field, according to a squared lattice experimental design with two 
replications.  

The mean of temperature and average annual rainfall of the station were 
15oC and 1100 mm, respectively. Each plot with an average area of 9m2 
comprised of four rows spaced 25cm apart. 

To collect data, rice plants were randomly selected and measured. Studied 
traits were: days to heading (DH); days to maturity (DM); plant height (PH); 
number of tillers (NT); panicle length (PL); flag leaf length (FL); flag leaf width 
(FW); length of the uppermost inter-node (LU); grain length (GL); grain breadth 
(GB); hundred grain weight (GW); number of grains per panicle (GP). Grain 
shape (GS) was calculated as the ratio of GL to GB. All the traits were measured 
on the basis of the standard evaluation system for rice published by the 
International Rice Research Institute (IRRI 1996). 

 
Statistical analysis 
Normality of the distribution of the data was evaluated using skewness and 

kurtosis parameters, related to each trait, using AMOS 22 (AMOS 2013) 
statistical software. Simple correlation coefficients were calculated for all 
possible comparisons using Pearson correlation coefficient.  

Stepwise multiple linear regression analysis was performed in order to 
determine the best sequential model representing causal relationship between 
predictor variables and rice grain shape. In fact, predictor variables were 
organized into first- and second-order paths. After identification of the model, 
direct and indirect effects of the predictor variables on response variable were 
computed using structural equation modeling (SEM) using AMOS 22 (AMOS 
2013) statistical package. Correlation and regression analysis were carried out 
using IBM Statistics 19 (IBM Statistics 2010. To estimate the standard error of 
path coefficients, bootstrap analysis was performed using AMOS 22 (AMOS 
2013) statistical package. 
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RESULTS AND DISCUSSION 

Simple correlations 

Simple correlations and path coefficient analysis were studied to determine 

the interrelations governing direct and indirect grain shape components. The 

simple correlation coefficients (Table 1) showed there were significant 

correlations between grain shape and all of the measured traits except for FL, UL 

and DH. The correlation between grain shape and other traits was of great 

importance for us, because the main purpose of this study was to identify traits 

affecting the grain shape. As shown in Table 1, traits GL, PL, PH and NT were 

positively and significantly correlated with GS. There were statistically 

significant and negative correlations between GS and some other rice characters 

such as DM, GP, GB, GW and FW (Table 1). 

 

Table 1. Pairwise Pearson correlation coefficients between 13 traits of 25 rice 

genotypes 
Trait a DH DM GP GL GB UL PL PH GW NT FW FL 

DM 0.72** 
           

GP 0.17 0.22 
          

GL 0.19 -0.34* -0.46** 
         

GB -0.16 0.24 0.50** -0.70** 
        

UL 0.22 0.22 -0.03 0.01 -0.01 
       

PL 0.45** 0.15 -0.41** 0.42** -0.47** 0.55** 
      

PH 0.30* 0.06 -0.17 0.39** -0.40** 0.78** 0.75** 
     

GW -0.18 -0.20 0.25 -0.06 0.57** -0.06 -0.35* -0.24 
    

NT 0.35* 0.24 -0.41** 0.12 -0.42** -0.15 0.32* -0.01 -0.37** 
   

FW 0.17 0.35* 0.75** -0.48** 0.49** 0.05 -0.37** -0.15 0.16 -0.26 
  

FL 0.36** 0.35* 0.19 -0.22 0.18 0.38** 0.41** 0.31* 0.003 0.21 0.34* 
 

GS 0.18 -0.32* -0.46** 0.87** -0.94** 0.01 0.48** 0.45** -0.41** 0.29* -0.49** -0.20 
* and ** mean that correlation is significant at the 0.05 and 0.01 level (2-tailed), respectively 
a The symbol of traits consist of: DH, days to heading; DM, days to maturity; GP, the number of grains per 

panicle; GL, grain length; GB, grain breadth; UL, the length of the uppermost inter-node; PL, panicle length; 

PH, plant height; GW, 100-grain weight; NT, the number of tillers; FW, flag leaf width; FL, flag leaf length; 
GS, grain shape. 

 
Considering that, grain length and grain breadth were the two important 

components of grain shape therefore, the relationship between grain length and 

grain breadth with other rice traits was also important. In this study, GL was 

significantly positively correlated with FW and FL while, it was significantly 

negatively correlated with DM and GP (Table 1). Significant positive 

correlations were observed between grain breadth with GP and FW while, the 

correlation between grain breadth with PL and NT was significantly negative 

(Table 1). 

 

Conventional and sequential path analysis 

To determine the relative importance of the traits affecting rice grain 

shape, the relevant correlation coefficients were separated into direct and indirect 

effects using conventional path analysis.  
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Table 2. Direct (the bold numbers on the diagonal) and indirect effects of first-

order predictor variables on grain shape of 25 rice genotypes plus two common 

measures of collinearity (tolerance, Tol and variance inflation factor, VIF) in 

conventional path analysis 
Trait

a
 DH DM GP GL GB UL PL PH GW NT FW FL Tol VIF 

DH -0.043 -0.031 -0.007 -0.008 0.007 -0.009 -0.019 -0.013 0.008 -0.015 -0.007 -0.015 0.07 15.25 

DM -0.006 -0.008 -0.002 0.003 -0.002 -0.002 -0.001 -0.001 0.002 -0.002 -0.003 -0.003 0.11 8.89 

GP 0.016 0.021 0.097 -0.044 0.048 -0.003 -0.040 -0.017 0.024 -0.040 0.073 0.019 0.11 8.86 

GL 0.088 -0.158 -0.210 0.460 -0.320 0.004 0.191 0.178 -0.029 0.056 -0.220 -0.103 0.09 10.96 

GB 0.097 -0.146 -0.307 0.427 -0.614 0.004 0.289 0.243 -0.352 0.255 -0.302 -0.113 0.10 9.98 

UL -0.009 -0.009 0.001 0.000 0.000 -0.043 -0.024 -0.033 0.003 0.006 -0.002 -0.016 0.14 7.27 

PL -0.001 0.000 0.001 -0.001 0.001 -0.001 -0.001 -0.001 0.000 0.000 0.001 -0.001 0.09 11.55 

PH 0.021 0.004 -0.012 0.027 -0.027 0.053 0.051 0.069 -0.016 -0.001 -0.010 0.021 0.10 9.69 

GW 0.008 0.009 -0.011 0.003 -0.026 0.003 0.016 0.011 -0.045 0.016 -0.007 0.000 0.22 4.63 

NT 0.001 0.000 -0.001 0.000 -0.001 0.000 0.001 0.000 -0.001 0.002 0.000 0.000 0.16 6.16 

FW -0.003 -0.007 -0.015 0.010 -0.010 -0.001 0.007 0.003 -0.003 0.005 -0.020 -0.007 0.10 9.85 

FL 0.006 0.006 0.003 -0.004 0.003 0.006 0.007 0.005 0.000 0.003 0.006 0.016 0.24 4.23 

Dependent Variable: GS, Residual effect=0.124 
aThe symbol of traits consist of: DH, days to heading; DM, days to maturity; GP, the number of grains per 

panicle; GL, grain length; GB, grain breadth; UL, the length of the uppermost inter-node; PL, panicle length; 
PH, plant height; GW, 100-grain weight; NT, the number of tillers; FW, flag leaf width; FL, flag leaf length; 

GS, grain shape. 

The results concerning direct and indirect effects of the studied traits on 

rice grain shape using conventional path analysis, where all traits were 

considered as first-order variables, with grain shape as the response variable 

(Model I), are presented in Table 2. Also, the results of two measures of 

collinearity analysis (Tolerance and Variance Inflation Factor) are presented in 

this Table.  
As shown in Table 2, according to the conventional path analysis and 

collinearity analysis, the collinearity measure (VIF) was almost high for some 

traits such as DH (VIF = 15.25), PL (VIF = 11.55) and GL (VIF = 10.98). Also, 

is some cases the VIFs were close to 10 (GB, VIF = 0.98; PH, VIF = 9.69; FW, 

VIF = 9.85) suggesting the potential existence of multicollinearity.Results of the 

sequential path analysis are shown in Table 3, where predictor traits, as grouped 

into first- and second-order variables, and grain shape as the response variable 

(Model II). Compared with the model I, grouping predictor variables by means of 

stepwise multiple linear regression resulted in decreased VIF values for all 

predictors (Table 3). Thus, compared with model I, application of sequential path 

analysis facilitated detection of the actual contribution of predictors with minor 

confounding effects. Likewise, some researchers such as Mohammadi et al., 

(2003) reported that, sequential path procedure reduces collinearity problems 

leading to a better understanding of the interrelationships among the various 

traits and their relative contribution. 

Normally, researchers are interested in testing the significance of statistics 

obtained in various statistical analyses. To perform such tests, standard error of 

the statistic is needed. 
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Table 3. Direct effects of predictor variables on the grain shape of 25 rice 

genotypes along with two common measures of collinearity values (tolerance and 

variance inflation factor, VIF) for predictor variables in conventional path 

analysis (CPA, all predictor variables as first-order variables) and sequential path 

analysis (SPA, predictors grouped into first- and second-order variables) 
Predictor 

variables 

Response 

variable 

Direct Effect 
 

Tolerance 
 

VIF 

SPA CPA 
 

SPA CPA 
 

SPA CPA 

GB GS -0.66 -0.61   0.48 0.10  2.10 9.98 

GL  0.43 0.46 
 

0.50 0.09  1.99 10.96 

GP  0.07 0.10 
 

0.73 0.11  1.37 8.86 

GL GB -0.21 -0.43 
 

0.83 0.12  1.20 8.42 

GW  0.53 0.46 
 

0.85 0.38  1.18 2.64 

NT  -0.28 -0.25 
 

0.81 0.20  1.24 5.08 

DM  0.33 0.27 
 

0.79 0.12  1.27 8.43 

GB GL -0.84 -0.47 
 

0.67 0.13  1.49 7.66 

GW  0.42 0.26 
 

0.67 0.23  1.49 4.36 

FW GP 0.69 0.39 
 

0.93 0.13  1.07 7.96 

NT  -0.23 -0.33   0.93 0.18  1.07 5.58 
The symbol of traits consist of: DM, days to maturity; FW, flag leaf width; GB, grain breadth; GL, grain length; 

GP, the number of grains per panicle; ; GS, grain shape; GW, 100-grain weight; NT, the number of tillers. 

 

Bootstrap analysis, as a re-sampling technique, provides an estimation of 

the standard error of any statistic. Results of the bootstrap analysis for direct 

effects are presented in Table 4. The low standard error and bias for all the path 

coefficients indicated the robustness of the model II in comparison with the 

model I. 

 

Table 4. Estimation of standard error values of path coefficients using bootstrap 

analysis with 200 bootstrap samples 
Predictor 

variables 

Response 

variable 
Adj. R2 

Direct 

Effect 

 Bootstrap 

 Mean Bias SE 

GB GS 0.98 -0.662  -0.666 -0.004 0.029 

GL   0.430  0.429 -0.001 0.026 

GP   0.071  0.066 -0.005 0.037 

DM GB 0.71 0.333  0.333 0.000 0.079 

GL   -0.214  -0.213 0.001 0.069 

GW   0.525  0.526 0.001 0.081 

NT   -0.275  -0.275 0.000 0.067 

GB GL 0.64 -0.840  -0.84 0.000 0.119 

GW   0.418  0.425 0.007 0.129 

FW GP 0.62 0.694  0.692 -0.002 0.075 

NT   -0.232  -0.243 -0.011 0.100 

The symbol of traits consist of: DM, days to maturity; FW, flag leaf width; GB, grain breadth; GL, grain length; 

GP, the number of grains per panicle; ; GS, grain shape; GW, 100-grain weight; NT, the number of tillers. 
Calculation were carried out by usin AMOS statistical pakage (AMOS 2013). 

 
Graphical presentation of the results facilitates understanding of the complex 

relationship among the various variables and their contributions. In this regard, 

the diagram of sequential path analysis drawn by using AMOS statistical package 

helps in better understanding of the complexity of relationships between 
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variables (Figure 1). The Root Mean Square Error of Approximation (RMSEA) 

fit statistic for the model was 0.091.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The diagram was drawn using AMOS statistical package (AMOS 2013). The adjusted R square values have 

been indicated by bold numbers below each of the dependent variables. 
The symbol of traits consist of: DM, days to maturity; FW, flag leaf width; GB, grain breadth; GL, grain length; 

GP, the number of grains per panicle; ; GS, grain shape; GW, 100-grain weight; NT, the number of tillers. 

 

Figure 1. Causal model diagram illustrating the interrelationships among various 

traits contributing to rice grain shape.  
 

 

The PCLOSE represents the p value for testing the null hypothesis that the 

population RMSEA is no greater than 0.05 indicating a close fit of the model in 

relation to the degrees of freedom. Also, the Chi-square (CMIN statistic) value 

was equal to 15.42. The p value was 0.164 revealing a proper goodness of fit for 

the model. 

Estimation of the adjusted coefficient of determination (Adj. R
2
) revealed 

that GB, GL and GP as first-order variables accounted for about 98% of the 

variation in grain shape (Figure 1 and Table 4). Also, the results of sequential 

path analysis, when the second-order variables were used as predictors, and the 

first-order variables as response variables, indicated that GW, DM positively and 

GL, NT negatively influenced the GB and accounted for 71% of the observed 

variation. Moreover, the GW positively and the GB negatively influenced GL 

and accounted for 64% of the observed variation while, FW positively and NT 

negatively influenced the GP and accounted for 62% of the observed variation 

(Figure 1 and Table 4). Direct and indirect effects of first- and second-order 

predictor variables on response variables, including GB, GL, GP and GS have 

been presented in Table 5. According to this table, the indirect effects of DM and 

NT on GS were low while, indirect effects of FW, GW, GL and GB on GS were 

RMSE = 0.091 

PCLOSE = 0.248 

Chi-square = 15.419, df = 11 
Probability level = 0.164 
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high. Amongst second-order predictors, GW was a noteworthy trait with regard 

to its high direct and indirect effects on GB and GL. Also, NT had a negative 

direct effect on GP while, FW showed a relatively high positive direct effect on 

GP. As shown in Table 5, in this study, one of the remarkable advantages of 

using SEM was that the indirect effects resulting from second-order predictors on 

GS were also estimated. 

 

Table 5. Direct (d) and indirect (i) effects for the predictor variables in sequential 

path analysis. 

Response variable  
predictor variables 

 FW DM NT GW GL GB GP 

GL d - - - 0.418 - -0.84 - 

 
i - -0.064 0.033 -0.933 0.219 -0.322 - 

GB d - 0.333 -0.275 0.525 -0.214 - - 

 
i - 0.008 -0.004 0.007 -0.027 0.219 - 

GP d 0.694 - -0.232 - - - - 

 
i - - - - - - - 

GS d - - - - 0.43 -0.662 0.071 

 
i 0.217 -0.071 0.035 -0.692 0.243 -0.931 - 

The symbol of traits consist of: DM, days to maturity; FW, flag leaf width; GB, grain breadth; GL, grain length; 
GP, the number of grains per panicle; ; GS, grain shape; GW, 100-grain weight; NT, the number of tillers. 

Calculation were carried out by usin AMOS statistical pakage (AMOS 2013). 

 

Identifying and analysis of associations between quantitative traits is 

important because, it can be used as a resource for designing selection-based 

breeding programs in the future. Most of the correlations obtained in this study 

were consistent with other studies. For example, likewise, significant positive 

correlations (P < 0.01) have been reported by Rabiei et al., (2004) between: GL 

and GS, GB and GW, GS and PH, DH and DM, DH and PL, PH and PL. 

Moreover, they reported significant negative correlations (P < 0.01) between: GL 

and GB, GB and GS, GB and PH, GB and PL which were totally in agreement 

with the results of the present work. Furthermore, in contrast to our results, they 

reported a significant positive correlation between PL and GP. Similar to the 

results of current work, a significant positive correlation between PH and PL was 

found by Hossain et al., (2015) and Kishore et al., (2015) while, Rai et al., (2015) 

reported it significant, but negative. According to our observations and in 

agreement with Hossain et al., (2015), the correlation between GW and GP was 

significant and positive while, Kishore et al., (2015) reported it significantly 

negative. A significant positive correlation between GW and GL was reported by 

Haider et al., (2014) and Kumar (2015) while, like current study, Rafii et al., 

(2014) found no such correlation. Similar to the results of this study, Hossain et 

al., (2015) found a significant negative correlation between NT and GP. They 

also reported a positive correlation between NT and DM while was in contrast to 

our observations. It seems that the discrepancies between the reports, regarding 

correlation coefficients between traits, are largely caused by working with 
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different populations, regarding the fact that diverse populations also have a 

different genetic structure. In this study, some relatively strong correlations were 

recorded such as FW-GP, DH-DM and PH-UL .Strong correlations are likely due 

to pleiotropy or linkage. QTL mapping is a method to answer whether linkage or 

pleiotropic effect is the responsible for the occurrence of a strong correlation 

(Chen and Lübberstedt 2010). 

Previous researches have indicated that path analysis provides more 

information on the interrelationships between traits than correlation coefficients 

(Kozak and Kang 2006; Sabaghnia et al., 2010). Path analysis provides a 

framework for better understanding of how plant morphological components 

affect a final target trait in field crops through determination of the most 

important factors that directly and/or indirectly affect the final target trait.  

In path coefficient analysis the amount that a trait contributes to yield is 

influenced by the different traits through different paths. Imprecise assessment of 

a trait’s contribution through incorrect pathways may misdirect breeding 

attempts, thus limiting the efficiency in selecting favorable cultivars (Agrama 

1996; Sabaghnia et al., 2010). Also the conventional approach for path analysis 

might result in a multicollinearity of variables, particularly when the correlations 

among some of the variables are high (Mohammadi et al., 2003). On the other 

hand, yield and shape-related traits are complicatedly interrelated, often leading 

to high multicollinearity. Thus, in this study, sequential path analysis was used to 

avoid the problems due to conventional path analysis and multicollinearity of 

variables. Such a strategy has been used before by researchers (Mohammadi et 

al., 2003; Sabaghnia et al., 2010). 

Most of the studies on the path coefficient analysis in rice have been 

conducted to analyze yield and yield components. Rabiei et al., (2004) performed 

sequential path analysis to identify direct and indirect effects of traits affecting 

GS. Based on their results, GB, GL and PH were determined as first-order 

predictor variables whereas, GE, PL and GP were as second-order predictors. In 

the present study however, GP included in the path model as first-order variable 

rather than PH whereas, GW, DM, NT and FW were considered as second-order 

predictors. In this study, the adj. R
2
 value calculated for each dependent variable 

was more than that of reported by (Rabiei et al., (2004)). 

As mentioned by Kozak and Azevedo (2014), path analysis is an integral 

part of structural equation modeling. Despite of this, some researchers use 

standardized stepwise multiple linear regression to organize the variables into 

different order paths to determine causal relationships. Subsequently, they draw 

the path diagram manually by using common software such as MS office Word. 

In fact, to construct the path diagram, they integrate information obtained from 

each separate regression analysis while the standardized regression coefficients 

are used as the path coefficients. Such a method of demonstration of information 

may be accompanied with error because of the following reasons: 
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By employing such a method, we assume that all of the model variables are 

perfectly measured (i.e. no measurement error). Hence, the ignored errors 

will downward bias of parameter estimates and leads to non-sign 

Normally, the model is structural when several paths are analyzed 

simultaneously. Therefore, inter-relationships among variables in the 

model would be complex. For example, in a sequential path diagram 

(similar to Figure 1) the first-order variables play two fully featured roles 

simultaneously as: (i) each of them acts as a response variable for the 

second-order predictors and (ii) they play the role of predictor variables 

for the main response variable. We don’t see such a complexities in 

separate regression analyses. 

It is natural that there may be reciprocal effects between first-order 

predictor variables (see Figure 1) while, stepwise regression analysis 

can’t estimate such effects because they belong to separate models and 

stepwise regression analysis can’t integrate them into one model.  

 

Therefore, it is always useful to switch to a full SEM using special 

software designed for this purpose such as AMOS. Although the process through 

which AMOS calculates the path coefficients is similar to a standardized 

regression, however, when we make the model sequential, (i.e. when we have 

both first- and second-order predictor variables in the model at the same time) the 

AMOS calculates path coefficients using a more complicated model. Hence, the 

outcome can't be equal as compared to the separate standardized regression 

coefficients. 
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